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ABSTRACT

Given a Jordan curve r in the complex plane, we describe a polynomial

family which is asymptotically orthonormal on r. The polynomials have some

similarities with the Faber polynomials but are simpler to compute with.

Numerical examples are presented.
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Let r be a jordan curve in the complex plane. We describe a polynomial

family, vhich is asymptotically orthonormal on r (as the degree of the

polynomials increases), and which is simple to compute. WO use the

polynomials to ro te functions f(s) analytic in the interior of r

and continuous on r. After some initial calculations# which are independent

of the functions to be approximated, each functions f() can be approximated

by an nth degree polynomial in O(n log(n)) operations. Theoretically, one

could use the Faber polynomials for r, but the proposed polynomials are much

simpler to compute with and almost as effective, as is seen by the bound for

"*-the resulting polynomial projection given.
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AN A SNrXO'WICAMLY ORTUOUOUIAL POLYNIAL FAMILY

Lothar Reloel

Let r be a Jordan curve in the complex plane, and let z - #(w) be an analytic

function on lv )P 1, much that # mape lvi ) 1 onto the exterior of r, with

#(-) - . # can be extended to a continuous bijective map on vi ) 1. The polynomials

we will study are defined by

n-..n1 n-1
(1.1) [ ( ( - *(e2kL/n)) + ti (z - (e2k ))) , - 0,1,2,...,

2c k 0 k,,O

where c denotes the capacity of r.

ux. 1.1. Let r be the unit circle, and let a - #(w) w w. Then

( 1" + I (a

k-0 k-0

a1 (1 11 + +, n 0,1,2#,..,

These are the Faber polynomials for the unit disk.

UX. 1.2. Let r betheellipse (x+iye x)2+(i)2 alo . Let andba - b

d 1- (2 - b2 ) 1 / 2 . "ken

(1.2) a a 4(v) -d lw + awv

The capacity of r is as. wAbseitute (1.2), A. e w t / n and c - do into (1.1).

This gives after som simplificatione
.,,"' v a-2n-n

pa(s)w + w
oa

These are the Faber polynomials for the ellipse bounded by r, .f. Curtiss [21. For

future reference, we note that

5.0.
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(1.3) pn(s) V n n

If >10 Or equivalently, if b > 0.

In section 2, we show that for a large class of boundaries r the polynomials

pn(x) are asymptotically orthonormal vith respect to an inner product, c. f. (1.2) and

(1.3). W e use these polynomials to define a bounded projection operator for polynomial

approhimation of functions, which are analytic interior to r and satisfy certain

smoothness properties on r. In section 3, we show how this projection onto polynomials of

* degree < n can be computed in O(n log(n)) operations for each function to be

approximated, provided that some Initial calculations independent of the function to

approximate have been carried out. section 4 contains numerial examples.
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Let 0 denote the a neiro r n e be the compemnt of 0.

thom2.1.

Asme that L1 - In continuous on l .1 and that -is of bounded variation on
d"i

Iml - I er sam O. Then

(2.1) pals)u-v(+o(n)), n * , uniformly for a eD where
v is defined by #(v) - x .

(2.2) p(aS)- o(n-1- 1), n too a 9, and uniformly for a

belonging to any closed subset of A.

if * is analytioc n Iv 1, then there is a constant r, 0 < r C 1, such that

pa(s) -W, + O(r"), n + Or uniformly for a e1. where

v is defined by v- #(z)

Pa(S) - O(r ), n+ Or a 4U and uniformly for a
belonging to any c2o"d subset of S.

Proof. In the proof me ake use of result Curtiss (2) obtained In hi. investigation of

the prdc

n-t1 ( - l211k/n).

I (s-a
k-0

Curtiss (21 & La I, shows that If f (0) Is a 2w-periodLc complex valued function of the

real variable 0, abeolutely aontinuous on the interval 0 e. ( 4 21, and if Ok - 2v

k - o(1)n, then

n f()m f()So(n 1),
."( 2 o 4 ) n ( I f ( V2 ( O ) d O + ( n ' n

k-0 0

If is absolutely continuous, Curtis's proof of (2.3) supplmented by integration by

parts yields

-3-
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2N- 2v :-
(2.4) f (0k - I f(O)dO + o(n n

k-C 0

S1Following Curtis@, we introduce

Aix( " *), v V

(v- v)

, V e

where IvI ) 1, 1v - 1. Let *(O,v) s- log(q(e O,v)). With a branch of the logarithm

choosen so that v w is analytic and single valued for vi > I s continuous on

Ivi - 1 and vanishes a. IvI *m, the Cauchy integral formula yields

2v
0(,)dO- o. Ivi )1

0

Let 0 g 21k/n, k -O()n -1. 21en, with a (v),

n-Iih
("- (" )) 

k

n-I iek n I '
(2.5) 0 n,,n 0 Ok 0 O

With a suitable branch of the logarithms, we have

n-I is k
I (z #( n-I n-I

?(.6) - ; (I *(,Ok1(,.1 - &k - v,0)d01 -,( 1 .
kc( 0

n-I 2vt

(2.7) - I (a " *(e 11 " (vn - 1111 * 01EI( ( ), n * *on k-0

Curtis@ (1) conaiders the case j - O, and shows that n(#(v)) - o(1), n *., uniformly

for Il 1. Por j 0 s, me straightforward modifications of Curtiss's proof, like

.-4-
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replacing (2.3) by (2.4), yields Hn (#(v)) o(n), n *n uniformly for IvI ) 1. if

ONv) Is analytic in a neighborhood of the unit circle, then # in an analytic function

of both its arguments, and In (i(w))l < (r n  for some constants a and r, 0 < r < I asn
n m, uniformly for Ivi) 1.

Now replace Ok by ' k + k-O(1)n-1, in (2.5). Then

4 n-i ie

R-1~ ;k kI (z - (a
(2.0) ) -eecnln

k** c (W + 1)

and analogously to (2.7) we obtain

a' 1;k n

(,.I 1- ;(s - #(0 )m (w + 1)(1 o( N1(, , n(0) -.
o k-0

Ifte average of (2.7) sad (2.9) yields (2.1). Also (2.2) follows from results of

Curtie. or # of bounded variation on IvI - 1, Curtiss shows that

J- R -1 iS
* (2.10) a (a - #(0 )) - -1 + O(h(n)), h(n) - o(1), a *

for any z aQ and uniformly for z belonging to any closed subset of Q. again it is

straightforward to show that If is of bounded variation for some 0 , O, then

h(n) a ol0(n' 1 ). if # is analytic in a neighborhood of lvI - 1, there are constants

B, r, 0 < r 4 1, such that ih(n)l < sr n . inspection of Curtiss proof also shows that

(2. 1)1 19

(s- ))i I + O(h(n)), n
A ku0

for any a 0 2, uniformly for z belonging to any closed subset of 9. Adding (2.10) and

(2.11) yields (2.2).

, t e e . . ' ,. o - . " .
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Let * (a) denote the inverse map of #(w) *We introduce the inner product

(2.12) (f,g) a- j f(z);(sz)d4 '(s)l - I I f(*(v))g(vll
"-2 2w l-

r Iwi-I

*The bar denotes complex conjugation.

Theorem 2.2.

(2.13) (p.(s),v ) O, 1) n, v " (Z).

,- (2.14) (p(v),- - 1

Proof.

n-I 2wik/n *. -I 2l1k/n -*-
(2.15) 1 I (#(v)-O(e ))w levwi -I- I (#(v)-#(e )) d

Il-I kO -l 2" Iv-I k-O

* being analytic exterior to IvI - 1, ve can replace the Integration path by a circle

viw - a suff iciently large so that * has an expansion

(2.16) #(w) - v+ a 0 + a 1 - + *,w 2 + w, )oi au

-ubstituting (2.16) into (2.15) yields (2.13). (2.14) follow, from

w- k- I IkjW.

We will use a Petrow-Galerkin method to compute polynomial approxlmations. Let

G(n) denote the GramLan

a.. (a- (Gkp] Qkp t- (p,(s),--), 0 4 k,A < n, w - 47(s)

and let F(n) be the -ourier operator
i (n) k . -1

; (n f - (V'. k S (f(z).v-), 0 4 k < n, w - * (s)

Theorem 2.3.

Let f(s) be analytic in 0, and have uniformly bounded Vourier coefficients

"k w (f(s),wk), a -(w). Let the projection Pn be defined by

( 2.171 P n f" &klcPk

0



with a , (0a-.a..n.. 1
t , a I- (a ) Vnf. 1hen, if i of bounded variation on

(2.'Jv 1 'm
*."(:t~sk + i k #1k  k,,- a ) k.

P Doof. By (2.13), (2.14) G(n) is an uppm triangu]r matrix with diagonal elements

-k - 1. the upper trianular elements have by theorem 2.1 the form

1,nOj). Consider the vetors a ... ',a
': ~A ( i w okA.% o- .0.,. . .o.;' ('".,,"-a.2'""

- (,,,T,#.. O and let the Matrix 9(m) be defined byi
(a) I; k- JI :, 0 4k,J (- n

k 0 . O4k,J < a

'he magnitude of the Is given by

0 0 , 1 0 1
(0,0(7 . . 1),

0 .. . . .-- 0 /

i( Ii is bounded as n4, and we can, for each 9 > 0, select an a such that

- t. No

(1(2m) a(a) (a)

Zet bI l  , and adame 1. Then

a (a) - b(- I,(--
k-1

and

$a I n ) - bl l 4 1 .a) e.*l, Is()1 t ) Ie 4

Ading amoe regularity assumtions on the functions to be approximated, we can bound

(2019) IV -1SW Infl r
IfIr

V. 's' -.-. * ... * -
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whore

i 21r =8up lf z)l~zer
, 5qMarais 2.4.

Let f be analytic on 2, and assume its Fourier coefficients (f(z),vk),
,2

" - *(z), k - 0,1,2,..., form an absolutely convergent series. Let be of bounded

variation on IvI - 1. Then Pn in bounded wrt the norm (2.19).

". Proof. We divide the matrix G(n) into 2 parts. For an m < n, let

ki k- or k<a

A -tAkj) Akj 1
,'- 0 ele.

Let 3 n  - A. For an arbitrary C ) 0, we can select an m so that IBI1  C < I

for all n, c.f. the proof of thoorem 2.3. Using MA" - Z, we obtain

(n) -1 -1 A
-. ll -"  

(1+(C (A + X) -1  A (-1I + + (U

k k

Hence,
i--

*n-I n-I k I n-I
suip 'akp(s)I C sup 1 0v 4C d I I
ser 0 IwI-I 0 0

for mome constant 40 independent of n. From (2.20),

l 1 + l) llA-i .33l fl I

Itmf was assumed bounded for all n.

4%"
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3. COMPUTING WITH THE POLYNO1 ALS

The proof of theorem 2.3 indicates a computational method for determining the

coefficients of Pnf in O(n log(n)) operations if the Gremajan is known.

1) Determine n Fourier coefficients b :- F f. This requires 0(n log(n))

operations.

2
2) Solve Gna = b. Solutions of the full system requires 2 operations, but we

only need to solve ha = b, where A is the submatrix of G'
n ) 

introduced in the proof

of theorem 2.3. A can be choosen independently of n. Solving A_ = b requires 0(n)

operations.

We next turn to the computation of the polynomials. The restriction of the mapping

function 4(w) to lwi - I is needed, and several numerical methods are available, see

Fornberg [31, Gutknecht [5) or Naichel [6). The method [61 yields also the capacity of

r, but not knowing the capacity only necessitates explicit normalization

(Pkls)e-(z))
k
) _ 1, k - O,I,...,n - 1. We finally note that when Pn

f 
has been

computed and is to be evaluated at many points it might be advantageous to use a

representation which is faster to evaluate than (2.171, like a Newton polynomial

* . representation.

.- 9-
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4. NU RTcAL 3XANPLZS

A2
We consider two contours r, one which is analytic, and one for which has a2dv

jump discontinuity on IwI - 1. All computations have been carried out on a UNIVAC 1100 in

single precision, i.e. with 8 significant digits. The images of the roots of unity, we

determined with approximately 6 significant digits. Let r be the ellipse

(x + iy I (1))2 + y2
C1}-

Ex. E1. j max Ip-+ (#(w)) - 1
Il-iIP,(()I

5 4.1.10"

10 2.4*10
- 5

Due to rounding errors, we cannot obtain a deviation much smaller than for j - 10.

7 Ex. Z2. Let f(z) - + 3) 1 .

j sup I(p f)() - f(s)I

10 . 1.3"10
- 3

20 3.3.10
-6

If the error would decrease maximally, see Gaier [4), ch. 1, it would decrease by a factor

2.56-10"3, when j is increased from 10 to 20. This is also the case. When j is

increased further, rounding errors dominate.

Ex. R3. Let f(z) t,--z2, where we choose a branch which has a discontinuity on the

negative real axis.

,"" sup IP +lf)(s - f(l)I
se

. 10 0.176

20 0.121

40 0.079

-10-
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The error decreases by a factor close to -2 the expected rate of convergence.

Zn the following examples r is a sports ground shaped region obtained by placing a

unit square between 2 unit disk halves.

- . 81 1 ax Ip:.+l*(w)) - w1~S1I
[qJ S8.86e10

" 2

Iwl'i

10 2.82"10
" 2

20 1.24.10-2

40 0.61010-
2

The error seem to decrease Ulke o(1/n), n a

Ix. 82 f(s) s- (a + W 1

max (P+ f)(a) - f(%)I

10 2.4#10 -

20 1.0*10" s

Zx. 33 f(s) s- s 2, the same branch as In ex. 33

I max I(P 1 f)(s) - f(a)I

10 0.196

20 0.137

40 0.090

-11
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